论文标题

发散功能和复杂结构的几何形状

Geometry from divergence functions and complex structures

论文作者

Ciaglia, Florio M., Di Cosmo, Fabio, Figueroa, Armando, Marmo, Giuseppe, Schiavone, Luca

论文摘要

在量子力学的几何结构中,我们在产品$ m \ times m $上引入了几乎复杂的结构$ j $,该$ m \ times m $的任何可行的统计歧管$ m $。然后,我们使用$ j $从发散函数中提取$ m \ times m $上的预选形式和类似公制的张量。这些张量可能会返回到$ M $,并且在相对于kullback-leibler相对熵的n维相关,并且在忠实密度操作员相对于VonNeumann-Umann-Umegaki相对的(适当的展开空间)的情况下,我们计算它们。

Motivated by the geometrical structures of quantum mechanics, we introduce an almost-complex structure $J$ on the product $M\times M$ of any parallelizable statistical manifold $M$. Then, we use $J$ to extract a pre-symplectic form and a metric-like tensor on $M\times M$ from a divergence function. These tensors may be pulled back to $M$, and we compute them in the case of an N-dimensional symplex with respect to the Kullback-Leibler relative entropy, and in the case of (a suitable unfolding space of) the manifold of faithful density operators with respect to the von Neumann-Umegaki relative entropy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源