论文标题
相称的亚组和微支持的动作
Commensurated subgroups and micro-supported actions
论文作者
论文摘要
让$γ$成为有限生成的组,$ x $是最小的紧凑型$γ$ -Space。我们假设$γ$ -ACTION是微支持的,即对于每个非空的开放子集$ u \ subseteq x $,有一个$γ$的元素,在$ u $上进行了非作用,并且在补充$ x \ setMinus u $上进行了琐碎的元素。我们表明,在适当的假设下,某些同一子组的存在$γ$对$γ$ -Action的动态产生了强大的限制:Space $ x $具有可压缩的开放子集,并且它是几乎$γ$ boundary。这些属性又对$γ$:$γ$的结构的限制既不是可正约的也不是残留有限的。在应用程序中,我们表明,与有限生成的Amenable群体的最小和膨胀的cantor作用相关的拓扑完整组(交替的子组)除琐碎的子组以外没有其他相称的亚组。同样,有限生成的分支组的每个相称的亚组都与正常亚组相称。后一种断言依赖于Dominik Francoeur的附录,并概括了Phillip Wesolek在有限生成的仅限临时分支组上的结果。其他应用程序涉及作用在圆圈上的离散组,而非污染物的中心晶格完全断开了局部紧凑的(TDLC)组。我们的结果以一种基本的方式依赖于TDLC组结构的最新结果,其微支撑作用的动力学以及统一的经常性亚组的概念。
Let $Γ$ be a finitely generated group and $X$ be a minimal compact $Γ$-space. We assume that the $Γ$-action is micro-supported, i.e. for every non-empty open subset $U \subseteq X$, there is an element of $Γ$ acting non-trivially on $U$ and trivially on the complement $X \setminus U$. We show that, under suitable assumptions, the existence of certain commensurated subgroups in $Γ$ yields strong restrictions on the dynamics of the $Γ$-action: the space $X$ has compressible open subsets, and it is an almost $Γ$-boundary. Those properties yield in turn restrictions on the structure of $Γ$: $Γ$ is neither amenable nor residually finite. Among the applications, we show that the (alternating subgroup of the) topological full group associated to a minimal and expansive Cantor action of a finitely generated amenable group has no commensurated subgroups other than the trivial ones. Similarly, every commensurated subgroup of a finitely generated branch group is commensurate to a normal subgroup; the latter assertion relies on an appendix by Dominik Francoeur, and generalizes a result of Phillip Wesolek on finitely generated just-infinite branch groups. Other applications concern discrete groups acting on the circle, and the centralizer lattice of non-discrete totally disconnected locally compact (tdlc) groups. Our results rely, in an essential way, on recent results on the structure of tdlc groups, on the dynamics of their micro-supported actions, and on the notion of uniformly recurrent subgroups.