论文标题

IQIYI提交活动网络挑战2019 Kinetics-700挑战:分层小组关注

iqiyi Submission to ActivityNet Challenge 2019 Kinetics-700 challenge: Hierarchical Group-wise Attention

论文作者

Liu, Qian, Cai, Dongyang, Liu, Jie, Ding, Nan, Wang, Tao

论文摘要

在本报告中,描述了IQIYI提交的方法对活动网络2019 Kinetics-700挑战的任务。模型集合阶段涉及三个模型:TSN,HG-NL和STNET。我们建议用于视频分类的框架级特征聚合的分层群体非本地(HG-NL)模块。标准的非本地(NL)模块在视频分类任务中汇总帧级特征有效,但呈现低参数效率和高计算成本。 HG-NL方法涉及层次结构结构,并生成多个注意图以提高性能。基于该分层组的结构,所提出的方法具有竞争精度,比标准NL的参数更少,计算成本较少。对于ActivityNet 2019 Kinetics-700挑战的任务,在模型集合之后,我们最终在测试集中获得了平均TOP-1和TOP-5错误百分比28.444%。

In this report, the method for the iqiyi submission to the task of ActivityNet 2019 Kinetics-700 challenge is described. Three models are involved in the model ensemble stage: TSN, HG-NL and StNet. We propose the hierarchical group-wise non-local (HG-NL) module for frame-level features aggregation for video classification. The standard non-local (NL) module is effective in aggregating frame-level features on the task of video classification but presents low parameters efficiency and high computational cost. The HG-NL method involves a hierarchical group-wise structure and generates multiple attention maps to enhance performance. Basing on this hierarchical group-wise structure, the proposed method has competitive accuracy, fewer parameters and smaller computational cost than the standard NL. For the task of ActivityNet 2019 Kinetics-700 challenge, after model ensemble, we finally obtain an averaged top-1 and top-5 error percentage 28.444% on the test set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源