论文标题
复发性神经网络波功能
Recurrent Neural Network Wave Functions
论文作者
论文摘要
从人工智能革命中出现的核心技术是经常性神经网络(RNN)。其独特的基于序列的体系结构可通过稳定的训练范例提供了可拖动的似然估计,这种组合促进了自然语言处理和神经机器翻译的许多壮观进步。该体系结构还成为了变分波函数的良好候选者,其中RNN参数被调整为学习量子哈密顿量的近似基态。在本文中,我们演示了RNN表示多个多体波函数的能力,并使用随机方法优化了变异参数。除了这些变异波函数的其他吸引人的特征外,它们的自回归性质允许通过提供独立的样本来有效地计算物理估计器。我们通过计算几种量子旋转模型的基态能量,相关函数和纠缠熵来证明RNN波函数的有效性,以在一个和两个空间维度中凝结物理学家的几种量子自旋模型。
A core technology that has emerged from the artificial intelligence revolution is the recurrent neural network (RNN). Its unique sequence-based architecture provides a tractable likelihood estimate with stable training paradigms, a combination that has precipitated many spectacular advances in natural language processing and neural machine translation. This architecture also makes a good candidate for a variational wave function, where the RNN parameters are tuned to learn the approximate ground state of a quantum Hamiltonian. In this paper, we demonstrate the ability of RNNs to represent several many-body wave functions, optimizing the variational parameters using a stochastic approach. Among other attractive features of these variational wave functions, their autoregressive nature allows for the efficient calculation of physical estimators by providing independent samples. We demonstrate the effectiveness of RNN wave functions by calculating ground state energies, correlation functions, and entanglement entropies for several quantum spin models of interest to condensed matter physicists in one and two spatial dimensions.