论文标题

与一般公用事业的集中动态匹配市场渐近地控制

Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities

论文作者

Blanchet, Jose H., Reiman, Martin I., Shah, Viragh, Wein, Lawrence M., Wu, Linjia

论文摘要

我们考虑一个匹配的市场,在该市场中,买卖双方根据独立的泊松流程以相同的速度到达,如果在指数级的时间之后不匹配的情况下,则独立放弃了市场。在这个集中式市场中,系统经理匹配任何买家和任何卖方的公用事业都是一般的随机变量。我们考虑一系列由$ n $索引的系统,其中$ n^{\ mathrm {th}} $系统中的到达量增加了$ n $。我们分析了两个参数策略的两个家族:只有当系统中的配偶数量高于阈值时,人口阈值策略才能与到达代理的最佳伴侣匹配,并且仅在相应的公用事业高于阈值时,实用程序阈值策略与最佳可用配对者相匹配。使用对买家和卖家的二维马尔可夫过程的流体分析,我们表明,当匹配的实用程序发行量轻尾时,具有阈值$ \ frac {n} {\ ln n n} $的人口阈值策略是在所有在Agent Argent Armival Epochs上都匹配的政策的最佳范围。在重型案例中,我们表征了两种策略的最佳阈值水平。我们还在不平衡的匹配市场中研究了公用事业阈值政策,并具有重尾匹配的公用事业,发现买卖双方具有相同的渐近公用事业阈值。当匹配的实用程序分布是指数,均匀,帕累托和相关的帕累托时,我们会得出最佳的阈值。我们发现,随着匹配公用事业分布的右尾巴变得越来越重,每种政策的门槛水平(因此市场厚度)增加,公用事业阈值策略胜过人口阈值政策的范围也是如此。

We consider a matching market where buyers and sellers arrive according to independent Poisson processes at the same rate and independently abandon the market if not matched after an exponential amount of time with the same mean. In this centralized market, the utility for the system manager from matching any buyer and any seller is a general random variable. We consider a sequence of systems indexed by $n$ where the arrivals in the $n^{\mathrm{th}}$ system are sped up by a factor of $n$. We analyze two families of one-parameter policies: the population threshold policy immediately matches an arriving agent to its best available mate only if the number of mates in the system is above a threshold, and the utility threshold policy matches an arriving agent to its best available mate only if the corresponding utility is above a threshold. Using a fluid analysis of the two-dimensional Markov process of buyers and sellers, we show that when the matching utility distribution is light-tailed, the population threshold policy with threshold $\frac{n}{\ln n}$ is asymptotically optimal among all policies that make matches only at agent arrival epochs. In the heavy-tailed case, we characterize the optimal threshold level for both policies. We also study the utility threshold policy in an unbalanced matching market with heavy-tailed matching utilities and find that the buyers and sellers have the same asymptotically optimal utility threshold. We derive optimal thresholds when the matching utility distribution is exponential, uniform, Pareto, and correlated Pareto. We find that as the right tail of the matching utility distribution gets heavier, the threshold level of each policy (and hence market thickness) increases, as does the magnitude by which the utility threshold policy outperforms the population threshold policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源