论文标题
可编程粒子的移动公羊和形状形成
Mobile RAM and Shape Formation by Programmable Particles
论文作者
论文摘要
我们研究了可编程物质的分布式模型Amoebot中的计算问题。在此模型中,称为颗粒的计算实体是匿名的有限状态机,可在平面的六边形插曲上操作和移动。在本文中,我们展示了恒定数量的此类弱粒子如何模拟能够在计算时在平面上移动的功能强大的Turing-Complete实体。然后,我们将工具应用于经典形状形成问题,提供了一种新的,更通用的分布式解决方案协议。确实,现有的算法将仅形成由细分和三角形布置的形状。我们的算法允许粒子形成更抽象和一般连接的形状,包括圆圈和螺旋,以及非整体维度的分形对象,例如Sierpinski Triangle或Koch Snowflake。取决于粒子初始配置的对称性,代替了形状的现有限制,我们的结果提供了可以通过最初简单地连接的粒子集可以形成的连接形状的完整表征。此外,在非连接形状的情况下,我们几乎为它们的形成性提供了必要和足够的条件。
We investigate computational issues in the distributed model Amoebots of programmable matter. In this model, the computational entities, called particles, are anonymous finite-state machines that operate and move on an hexagonal tasselation of the plane. In this paper we show how a constant number of such weak particles can simulate a powerful Turing-complete entity that is able to move on the plane while computing. We then show an application of our tool to the classical Shape-Formation problem, providing a new and much more general distributed solution protocol. Indeed, the existing algorithms would allow to form only shapes made of arrangements of segments and triangles. Our algorithm allows the particles to form more abstract and general connected shapes, including circles and spirals, as well as fractal objects of non-integer dimension, such as the Sierpinski triangle or the Koch snowflake. In lieu of the existing limitation on the formability of a shape depending on the symmetry of the initial configuration of the particles, our result provides a complete characterization of the connected shapes that can be formed by an initially simply connected set of particles. Furthermore, in the case of non-connected shapes, we give almost-matching necessary and sufficient conditions for their formability.