论文标题
Hom-Lie Group和Hom-Lie代数的Kähler-Norden结构
Kähler-Norden structures on Hom-Lie group and Hom-Lie algebras
论文作者
论文摘要
在本文中,我们描述了两个几何概念,即霍姆·诺登群体的全态Norden结构和Kähler-Norden结构,并证明在左不变设置中的Hom-Lie组上,这些结构相互关联。我们研究了具有阿贝尔复合物结构的Kähler-Norden结构,并赋予Hom-Lie群体上的Holomorphic Norden结构的曲率特性。最后,我们表明,如果其剩下的左hom-hom-hom-lie代数均具有较平坦的hom-hom-hom-lie群,则如果其左传导式复杂结构(复杂的结构)是阿贝尔人,则携带一个左左代数。
In the present paper, we describe two geometric notions, holomorphic Norden structures and Kähler-Norden structures on Hom-Lie groups, and prove that on Hom-Lie groups in the left invariant setting, these structures are related to each other. We study Kähler-Norden structures with abelian complex structures and give the curvature properties of holomorphic Norden structures on Hom-Lie groups. Finally, we show that any left-invariant holomorphic Hom-Lie group is a flat (holomorphic Norden Hom-Lie algebra carries a Hom-Left-symmetric algebra) if its left-invariant complex structure (complex structure) is abelian.