论文标题
多稳定性和Hitchin-Kobayashi对应关系
Polystability and the Hitchin-Kobayashi correspondence
论文作者
论文摘要
使用hodge理论的准线性版本,在紧凑的kaehler歧管上给定多型捆绑包的社区中的圆形矢量捆绑包被证明是(poly)稳定的,并且仅当其相应的类是(poly)稳定的几何学理论的(poly)稳定的几何学理论与无量型组的线性型号的几何学不变理论相关。
Using a quasi-linear version of Hodge theory, holomorphic vector bundles in a neighbourhood of a given polystable bundle on a compact Kaehler manifold are shown to be (poly)stable if and only if their corresponding classes are (poly)stable in the sense of geometric invariant theory with respect to the linear action of the automorphism group of the bundle on its space of infinitesimal deformations.