论文标题
对象凝结:物理探测器,图和图像数据中的一阶段无网格多对象重建
Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data
论文作者
论文摘要
高能物理探测器,图像和点云在对象检测方面具有许多相似之处。但是,尽管在计算机视觉中检测图像中未知数的对象数量,但即使是机器学习辅助对象重建算法,粒子物理中的对象几乎完全按照对象基础预测属性。计算机视觉的传统方法要么对对象大小施加隐式约束,因此不适合稀疏检测器数据,或者依靠对象密集和固体。此处提出的对象冷凝方法独立于对对象大小,排序或对象密度的假设,以及对非图像样数据结构(例如图形和点云)的进一步概括,这些数据结构更适合表示检测器信号。像素或顶点本身可以用作整个对象的表示,并且在潜在空间和信心分配中可学习的本地聚类的组合允许一个人以简单的算法收集预测对象属性的冷凝物。作为概念证明,将对象凝结方法应用于图像中的简单对象分类问题,并用于从检测器信号中重建多个粒子。后者的结果也与经典的粒子流接近方法进行了比较。
High-energy physics detectors, images, and point clouds share many similarities in terms of object detection. However, while detecting an unknown number of objects in an image is well established in computer vision, even machine learning assisted object reconstruction algorithms in particle physics almost exclusively predict properties on an object-by-object basis. Traditional approaches from computer vision either impose implicit constraints on the object size or density and are not well suited for sparse detector data or rely on objects being dense and solid. The object condensation method proposed here is independent of assumptions on object size, sorting or object density, and further generalises to non-image-like data structures, such as graphs and point clouds, which are more suitable to represent detector signals. The pixels or vertices themselves serve as representations of the entire object, and a combination of learnable local clustering in a latent space and confidence assignment allows one to collect condensates of the predicted object properties with a simple algorithm. As proof of concept, the object condensation method is applied to a simple object classification problem in images and used to reconstruct multiple particles from detector signals. The latter results are also compared to a classic particle flow approach.