论文标题

分布式学习与依赖样本

Distributed Learning with Dependent Samples

论文作者

Sun, Zirui, Lin, Shao-Bo

论文摘要

本文着重于针对强混合序列的分布式内核脊回归的学习率分析。使用最近开发的积分运算符方法和Banach值强的混合序列的经典协方差不平等,我们成功地得出了分布式内核脊回归的最佳学习率。作为副产品,我们还推导了混合特性的足够条件,以保证内核脊回归的最佳学习率。我们的结果将适用的分布式学习范围从I.I.D.样品到非i.i.d。序列。

This paper focuses on learning rate analysis of distributed kernel ridge regression for strong mixing sequences. Using a recently developed integral operator approach and a classical covariance inequality for Banach-valued strong mixing sequences, we succeed in deriving optimal learning rate for distributed kernel ridge regression. As a byproduct, we also deduce a sufficient condition for the mixing property to guarantee the optimal learning rates for kernel ridge regression. Our results extend the applicable range of distributed learning from i.i.d. samples to non-i.i.d. sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源