论文标题
A数字半径不平等的改进及其应用
Refinements of A-numerical radius inequalities and their applications
论文作者
论文摘要
我们为半希尔伯特太空运营商的A数字半径呈现尖锐的下限。我们还提出了一个上限。此外,我们计算了$ b $ numerical半径为$ 2 \ times 2 $运算符矩阵其中的新上限,其中$ b = \ textit {diag}(a,a)$,$ a $是正运算符。作为A-umerical半径不等式的应用,我们获得了多项式零的界限,这对多项式零的一些著名现有界限有所改善。
We present sharp lower bounds for the A-numerical radius of semi-Hilbertian space operators. We also present an upper bound. Further we compute new upper bounds for the $B$-numerical radius of $2 \times 2$ operator matrices where $B = \textit{diag}(A,A)$, $A$ being a positive operator. As an application of the A-numerical radius inequalities, we obtain a bound for the zeros of a polynomial which is quite a bit improvement of some famous existing bounds for the zeros of polynomials.