论文标题
Ruelle Zeta功能来自现场理论
Ruelle zeta function from field theory
论文作者
论文摘要
我们提出了对Ruelle Zeta函数的现场理论解释,并展示如何将其视为$ bf $理论的分区函数时,当实施了触点歧管上的异常固定条件时。这表明,由于拉格朗日submanifolds的同义,刺激了ruelle zeta函数与分析扭转之间的等效性,对猜想的替代性改造。
We propose a field-theoretic interpretation of Ruelle zeta function, and show how it can be seen as the partition function for $BF$ theory when an unusual gauge fixing condition on contact manifolds is imposed. This suggests an alternative rephrasing of a conjecture due to Fried on the equivalence between Ruelle zeta function and analytic torsion, in terms of homotopies of Lagrangian submanifolds.