论文标题

米尔诺公式的概括

A generalization of Milnor's formula

论文作者

Zach, Matthias

论文摘要

我们描述了米尔诺(Milnor)公式的概括,以归因于函数$ f $的隔离性超表面奇异性,其限制$ f |(x,0)$ to任意奇异的奇异降低复杂的分析空间$(x,0)\ subset(\ mathbb c^n,0)$具有分层的孤立的singularitified sance。 Milnor编号的相应类似物,$μ_f(α; x,0)$,是地层$ \ MATHSCRS_α$ $(x,0)$ $ f |(x,0)$中的Morse关键点的数量。我们的公式根据基于nash闭合的nash修饰的衍生几何形状表示$μ_f(α; x,0)$作为同源指数。尽管该设置中的大多数拓扑方面已经了解到,但我们的考虑提供了相应的分析对应物。我们还描述了如何通过我们的公式来计算$μ_f(α; x,0)$的数字,如果闭合$ \ edline {\ Mathscrs_α} \ subset x $的闭合$ \ edine cosse the Stratum的X $是一个超曲面。

We describe a generalization of Milnor's formula for the Milnor number of an isolated hypersurface singularity to the case of a function $f$ whose restriction $f|(X,0)$ to an arbitrarily singular reduced complex analytic space $(X,0) \subset (\mathbb C^n,0)$ has an isolated singularity in the stratified sense. The corresponding analogue of the Milnor number, $μ_f(α;X,0)$, is the number of Morse critical points in a stratum $\mathscr S_α$ of $(X,0)$ in a morsification of $f|(X,0)$. Our formula expresses $μ_f(α;X,0)$ as a homological index based on the derived geometry of the Nash modification of the closure of the stratum $\mathscr S_α$. While most of the topological aspects in this setup were already understood, our considerations provide the corresponding analytic counterpart. We also describe how to compute the numbers $μ_f(α;X,0)$ by means of our formula in the case where the closure $\overline{ \mathscr S_α} \subset X$ of the stratum in question is a hypersurface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源