论文标题

关于常规曲霉的图形分裂

On graphic splitting of regular matroids

论文作者

Mundhe, Ganesh, Dalvi, K. V.

论文摘要

拉古纳森(Raghunathan)在al。 [9]引入了针对二进制矩阵的一对元素的分裂操作,并使用它表征了Eulerian二进制矩阵。通常,拆分操作不能保留给定矩形的图形性能。 Shikare和Waphare [10]获得了一类图形矩阵的表征,这些图形矩阵在分裂操作下相对于一对元素产生图形矩阵。我们研究了分裂操作对常规矩阵的影响,并表征了常规矩阵的类别,这些矩形在分裂操作下产生图形矩阵。我们还为两个已知结果提供了替代和简短的证明。

Raghunathan at al. [9] introduced splitting operation with respect to a pair of element for binary matroid and characterized Eulerian binary matroids using it. In general, the splitting operation does not preserve the graphicness property of the given matroids. Shikare and Waphare [10] obtained the characterization for the class of graphic matroids which yield graphic matroids under the splitting operation with respect to a pair of elements. We study the effect of the splitting operation on regular matroids and characterize the class of regular matroids which yield graphic matroids under the splitting operation. We also provide an alternate and short proof to two of the known results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源