论文标题
固定轴对称空间中的光子区域和脐带条件
Photon regions and umbilic conditions in stationary axisymmetric spacetimes
论文作者
论文摘要
强力磁场中的光子区域(PR)定义为一个紧凑的区域,光子可以无休止地行进而无需去无穷大或在事件范围内消失。在Schwarzschild中,公制pr将其退化为二维光子球$ r = 3r_g/2 $,其中封闭的圆形光子轨道所在。在时空中,光子球作为三维超表面是脐带(其第二个二次形式是纯痕迹)。在Kerr公制中,赤道圆形轨道具有不同的RADII,用于列表,$ r_p $和逆行,$ r_r $,运动(其中$ r $是boyer-lindquist radial变量),而$ r_p <r_p <r_r <r_r $ the the the球形orbits具有常数$ r $,而没有更多的splanar,但填充了一些splanares。但是,这些球体不对应于脐带超曲面。在更通用的固定轴对称空间中不允许完全集成地球方程,数值集成也显示了PR的存在,但是到目前为止,基本的几何结构尚未完全鉴定。在这里,我们建议对通用固定轴对称空间中的PR的几何描述,表明PR可以通过{\ em部分脐带超毛面}叶状,以使脐带条件适用于叶面参数定义的轨道类别。新的形式主义开辟了一种对固定轴对称空间中PR的分析描述的方法,该空间具有不可分割的地球方程。
Photon region (PR) in the strong gravitational field is defined as a compact region where photons can travel endlessly without going to infinity or disappearing at the event horizon. In Schwarzschild metric PR degenerates to the two-dimensional photon sphere $r=3r_g/2$ where closed circular photon orbits are located. The photon sphere as a three-dimensional hypersurface in spacetime is umbilic (its second quadratic form is pure trace). In Kerr metric the equatorial circular orbits have different radii for prograde, $r_p$, and retrograde, $r_r$, motion (where $r$ is Boyer-Lindquist radial variable), while for $r_p<r<r_r$ the spherical orbits with constant $r$ exist which are no more planar, but filling some spheres. These spheres, however, do not correspond to umbilic hypersurfaces. In more general stationary axisymmetric spacetimes not allowing for complete integration of geodesic equations, the numerical integration show the existence of PR as well, but the underlying geometric structure was not fully identified so far. Here we suggest geometric description of PR in generic stationary axisymmetric spacetimes, showing that PR can be foliated by {\em partially umbilic hypersurfaces}, such that the umbilic condition holds for classes of orbits defined by the foliation parameter. New formalism opens a way of analytic description of PR in stationary axisymmetric spacetimes with non-separable geodesic equations.