论文标题

顶点增强网络嵌入的随机步行

Vertex-reinforced Random Walk for Network Embedding

论文作者

Xiao, Wenyi, Zhao, Huan, Zheng, Vincent W., Song, Yangqiu

论文摘要

在本文中,我们研究了网络嵌入随机步行的基本问题。我们建议使用非马克维亚随机步行,即顶点加强随机步行(VRRW)的变体,以充分利用随机步行路径的历史记录。为了解决VRRW的陷入困境问题,我们引入了一种剥削探索机制,以帮助随机步行跳出卡住的设置。新的随机步行算法具有VRRW的相同收敛属性,因此可用于学习稳定的网络嵌入。两个链接预测基准数据集和三个节点分类基准数据集的实验结果表明,我们所提出的方法强化2VEC可以通过较大的边距胜过基于最先进的随机步行嵌入方法。

In this paper, we study the fundamental problem of random walk for network embedding. We propose to use non-Markovian random walk, variants of vertex-reinforced random walk (VRRW), to fully use the history of a random walk path. To solve the getting stuck problem of VRRW, we introduce an exploitation-exploration mechanism to help the random walk jump out of the stuck set. The new random walk algorithms share the same convergence property of VRRW and thus can be used to learn stable network embeddings. Experimental results on two link prediction benchmark datasets and three node classification benchmark datasets show that our proposed approach reinforce2vec can outperform state-of-the-art random walk based embedding methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源