论文标题

人工智能援助可大大改善病理学家的格里森活检分级

Artificial Intelligence Assistance Significantly Improves Gleason Grading of Prostate Biopsies by Pathologists

论文作者

Bulten, Wouter, Balkenhol, Maschenka, Belinga, Jean-Joël Awoumou, Brilhante, Américo, Çakır, Aslı, Farré, Xavier, Geronatsiou, Katerina, Molinié, Vincent, Pereira, Guilherme, Roy, Paromita, Saile, Günter, Salles, Paulo, Schaafsma, Ewout, Tschui, Joëlle, Vos, Anne-Marie, van Boven, Hester, Vink, Robert, van der Laak, Jeroen, de Kaa, Christina Hulsbergen-van, Litjens, Geert

论文摘要

虽然格里森评分是前列腺癌患者最重要的预后标记,但它具有显着的观察者变异性。基于深度学习的人工智能(AI)系统已被证明可以在格里森评分时实现病理学家水平的表现。但是,在存在伪影,异物或其他异常情况下,此类系统的性能会降解。病理学家将其专业知识与AI系统的反馈融合在一起可能会导致胜过单个病理学家和系统的协同作用。尽管围绕AI的援助进行了炒作,但病理领域中有关此主题的现有文献是有限的。我们调查了AI援助对排序前列腺活检的价值。一个有14个观察家的小组在有和没有AI援助的情况下分级了160个活检。使用AI,面板与专家参考标准的一致性显着增加(四次加权Cohen的Kappa,0.799 vs 0.872; P = 0.018)。我们的结果表明,AI系统在Gleason评分中的附加值,但更重要的是,显示了病理学家-AI协同作用的好处。

While the Gleason score is the most important prognostic marker for prostate cancer patients, it suffers from significant observer variability. Artificial Intelligence (AI) systems, based on deep learning, have proven to achieve pathologist-level performance at Gleason grading. However, the performance of such systems can degrade in the presence of artifacts, foreign tissue, or other anomalies. Pathologists integrating their expertise with feedback from an AI system could result in a synergy that outperforms both the individual pathologist and the system. Despite the hype around AI assistance, existing literature on this topic within the pathology domain is limited. We investigated the value of AI assistance for grading prostate biopsies. A panel of fourteen observers graded 160 biopsies with and without AI assistance. Using AI, the agreement of the panel with an expert reference standard significantly increased (quadratically weighted Cohen's kappa, 0.799 vs 0.872; p=0.018). Our results show the added value of AI systems for Gleason grading, but more importantly, show the benefits of pathologist-AI synergy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源