论文标题

3D点云增强使用图模型的多视图深度测量

3D Point Cloud Enhancement using Graph-Modelled Multiview Depth Measurements

论文作者

Zhang, Xue, Cheung, Gene, Pang, Jiahao, Tian, Dong

论文摘要

通常是从不同角度的传感器收集的深度测量中合成3D点云。获得的测量通常既精确又被噪声损坏。为了提高质量,先前的作品在将不完美的深度数据投射到3D空间后,将综合的3D点云A后立方置。取而代之的是,我们在先验的图像上增强了深度测量值,在从改进的测量结果中综合了3D点云之前,利用了跨视图的固有的3D几何相关。通过增强接近实际感应过程,我们将受益于针对深度图像形成模型的优化,然后在随后的处理步骤之前可以进一步掩盖测量误差。从数学上讲,对于每个像素行,在一对整流的视点深度图像中,我们首先使用以前的增强行中的数据构建图形,以公制学习来反映像素间的相似性。为了同时优化左和右视点图像,我们根据3D几何关系从左像素行编写一个非线性映射函数。我们制定了一个MAP优化问题,在适当的线性近似后,该问题导致无约束的凸面和可区分的目标,可使用快速梯度方法(FGM)解决。实验结果表明,我们的方法明显胜过最近合成3D点云后增强算法的近代算法。

A 3D point cloud is often synthesized from depth measurements collected by sensors at different viewpoints. The acquired measurements are typically both coarse in precision and corrupted by noise. To improve quality, previous works denoise a synthesized 3D point cloud a posteriori after projecting the imperfect depth data onto 3D space. Instead, we enhance depth measurements on the sensed images a priori, exploiting inherent 3D geometric correlation across views, before synthesizing a 3D point cloud from the improved measurements. By enhancing closer to the actual sensing process, we benefit from optimization targeting specifically the depth image formation model, before subsequent processing steps that can further obscure measurement errors. Mathematically, for each pixel row in a pair of rectified viewpoint depth images, we first construct a graph reflecting inter-pixel similarities via metric learning using data in previous enhanced rows. To optimize left and right viewpoint images simultaneously, we write a non-linear mapping function from left pixel row to the right based on 3D geometry relations. We formulate a MAP optimization problem, which, after suitable linear approximations, results in an unconstrained convex and differentiable objective, solvable using fast gradient method (FGM). Experimental results show that our method noticeably outperforms recent denoising algorithms that enhance after 3D point clouds are synthesized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源