论文标题
调试机器学习管道
Debugging Machine Learning Pipelines
论文作者
论文摘要
机器学习任务需要使用复杂的计算管道来得出定量和定性结论。如果管道中的某些活动产生错误或非信息输出,则管道可能会失败或产生不正确的结果。推断出失败和意外行为的根本原因是具有挑战性的,通常需要很多人类的思想,并且既耗时又容易出错。我们提出了一种新方法,利用迭代和出处来自动推断根本原因并得出失败的简洁解释。通过详细的实验评估,我们评估了与艺术状况相比,我们的方法的成本,精度和回忆。我们的源代码和实验数据将用于可重复性和增强。
Machine learning tasks entail the use of complex computational pipelines to reach quantitative and qualitative conclusions. If some of the activities in a pipeline produce erroneous or uninformative outputs, the pipeline may fail or produce incorrect results. Inferring the root cause of failures and unexpected behavior is challenging, usually requiring much human thought, and is both time-consuming and error-prone. We propose a new approach that makes use of iteration and provenance to automatically infer the root causes and derive succinct explanations of failures. Through a detailed experimental evaluation, we assess the cost, precision, and recall of our approach compared to the state of the art. Our source code and experimental data will be available for reproducibility and enhancement.