论文标题

清醒:用于DDOS攻击检测的实用,轻巧的深度学习解决方案

LUCID: A Practical, Lightweight Deep Learning Solution for DDoS Attack Detection

论文作者

Doriguzzi-Corin, Roberto, Millar, Stuart, Scott-Hayward, Sandra, Martinez-del-Rincon, Jesus, Siracusa, Domenico

论文摘要

分布式拒绝服务(DDOS)攻击是当今互联网中最有害的威胁之一,破坏了基本服务的可用性。 DDOS检测的挑战是攻击方法的组合以及要分析的实时流量的数量。在本文中,我们提出了一种名为Lucid的实用,轻巧的深度学习DDOS检测系统,该系统利用了卷积神经网络(CNN)的特性,以将交通流归类为恶意或良性。我们做出四个主要贡献; (1)CNN的创新应用以检测​​低处理开销的DDOS流量,(2)数据集 - 敏捷的预处理机制,以产生用于在线攻击检测的流量观察,(3)激活分析以解释Lucid的DDOS分类,以及(4)对资源构成的硬件平台的经验验证。使用最新数据集,Lucid与现有的最新检测精度相匹配,同时与最新的ART相比,处理时间减少了40倍。通过我们的评估结果,我们证明所提出的方法适合在资源受限的操作环境中有效检测。

Distributed Denial of Service (DDoS) attacks are one of the most harmful threats in today's Internet, disrupting the availability of essential services. The challenge of DDoS detection is the combination of attack approaches coupled with the volume of live traffic to be analysed. In this paper, we present a practical, lightweight deep learning DDoS detection system called LUCID, which exploits the properties of Convolutional Neural Networks (CNNs) to classify traffic flows as either malicious or benign. We make four main contributions; (1) an innovative application of a CNN to detect DDoS traffic with low processing overhead, (2) a dataset-agnostic preprocessing mechanism to produce traffic observations for online attack detection, (3) an activation analysis to explain LUCID's DDoS classification, and (4) an empirical validation of the solution on a resource-constrained hardware platform. Using the latest datasets, LUCID matches existing state-of-the-art detection accuracy whilst presenting a 40x reduction in processing time, as compared to the state-of-the-art. With our evaluation results, we prove that the proposed approach is suitable for effective DDoS detection in resource-constrained operational environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源