论文标题
弱耦合,强耦合和高几何近近近似值的大阶参数化
Weak-Coupling, Strong-Coupling and Large-Order Parametrization of the Hypergeometric-Meijer Approximants
论文作者
论文摘要
如果没有Borel或Pad $ \急性{E} $技术,我们表明,对于具有$ n!$大订单生长因子的发散系列,超几何系列$ _ {k+1} f_ {k-1} $代表没有免费参数的合适近似值。然后,通过Meijer-g函数来重新定义$ _ {K+1} f_ {K-1} $系列。 $ _ {k+1} f_ {k-1} $的选择即使只有弱耦合信息作为输入也可以加速收敛。为了进一步加速收敛,我们采用了强耦合和大阶信息。我们获得了一个新约束,该约束将分子和分母参数的差异与大阶参数之一相关。为了测试该约束的有效性,我们采用了它来获得零维$ ϕ^4 $标量场理论的确切分区函数。该算法还用于重新启动$ ϕ_ {0+1}^{4} $和$ ix__ {0+1}^{3} $ scalial of callar Field Theories的基态能量。我们为整个耦合空间获得准确的结果,并且在使用更高订单方面有系统地提高精度。 $ O(4)$ - 对称场模型的关键指数在三个维度上的确切结果是从相应扰动系列的最近的六环顺序重新召集中获得的。 $ ϕ^{4} _ {3+1} $ field理论的$β$功能的最新七环订单已重新定义,显示了固定点的不存在。七环序列的第一个重新召集结果代表了二维自避免自避免的聚合物的分形维度,在这里我们获得非常准确的$ d_f = 1.3307 $的非常准确的值($ 4/3 \ yout1.33333 $)。
Without Borel or Pad$\acute{e}$ techniques, we show that for a divergent series with $n!$ large-order growth factor, the set of Hypergeometric series $_{k+1}F_{k-1}$ represents suitable approximants for which there exist no free parameters. The divergent $_{k+1}F_{k-1}$ series are then resummed via their representation in terms of the Meijer-G function. The choice of $_{k+1}F_{k-1}$ accelerates the convergence even with only weak-coupling information as input. For more acceleration of the convergence, we employ the strong-coupling and large-order information. We obtained a new constraint that relates the difference of numerator and denominator parameters in the Hypergeometric approximant to one of the large-order parameters. To test the validity of that constraint, we employed it to obtain the exact partition function of the zero-dimensional $ϕ^4$ scalar field theory. The algorithm is also applied for the resummation of the ground state energies of $ϕ_{0+1}^{4}$ and $iϕ_{0+1}^{3}$ scalar field theories. We get accurate results for the whole coupling space and the precision is improved systematically in using higher orders. Precise results for the critical exponents of the $O(4)$-symmetric field model in three dimensions have been obtained from resummation of the recent six-loops order of the corresponding perturbation series. The recent seven-loops order for the $β$-function of the $ϕ^{4}_{3+1}$ field theory has been resummed which shows non-existence of fixed points. The first resummation result of the seven-loop series representing the fractal dimension of the two-dimensional self-avoiding polymer is presented here where we get a very accurate value of $d_f=1.3307$ compared to its exact value ($4/3\approx1.3333$).