论文标题

重新配置$ 10 $颜色的平面图的更新

An update on reconfiguring $10$-colorings of planar graphs

论文作者

Dvořák, Zdeněk, Feghali, Carl

论文摘要

$ k $ g $的$ k $颜色的重新配置图$ r_k(g)$具有顶点,因为顶点套装$ g $的所有可能的$ k $ - 颜色的集合,如果恰好的一个顶点的颜色不同,则两种颜色相邻。 Bousquet and Perarnau(2016)的结果是有界变性图的结果,这意味着,如果$ g $是带有$ n $ vertices的平面图,则$ r_ {12}(g)$的直径最多为$ 6n $。我们改善了颜色的数量,表明$ r_ {10}(g)$的直径最多为$ 8n $,每个平面图$ g $带有$ n $ vertices。

The reconfiguration graph $R_k(G)$ for the $k$-colorings of a graph $G$ has as vertex set the set of all possible proper $k$-colorings of $G$ and two colorings are adjacent if they differ in the color of exactly one vertex. A result of Bousquet and Perarnau (2016) regarding graphs of bounded degeneracy implies that if $G$ is a planar graph with $n$ vertices, then $R_{12}(G)$ has diameter at most $6n$. We improve on the number of colors, showing that $R_{10}(G)$ has diameter at most $8n$ for every planar graph $G$ with $n$ vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源