论文标题

空间出生死亡过程:基本特性及其强度功能的估计

Spatial birth-death-move processes : basic properties and estimation of their intensity functions

论文作者

Lavancier, Frédéric, Guével, Ronan Le

论文摘要

许多时空数据记录了个体的出生和死亡时间,以及他们在一生中的空间轨迹,无论是通过连续的时间观察还是离散时间观察。自然应用包括流行病学,基于个体的生态模型,在生物成像中观察到的时空动态以及计算机视觉。 本文的目的是在这种情况下估算出生和死亡强度的功能,这完全取决于所有活着的人的当前空间配置。 尽管人口规模的时间演变是一个简单的出生死亡过程,但观察所有个人的寿命和轨迹都要求采用新的范式。为了使该框架形式化,我们介绍了空间出生死亡移动过程,其中出生和死亡动态取决于当前人口的空间配置,并且个人可以根据可能的相互作用的连续马尔可夫过程在其一生中移动。我们考虑非参数的出生和死亡强度功能。设置之所以原始,是因为时间的每个观察结果属于非矢量,无限的维空间,并且观察值之间的依赖性几乎是无法处理的。在相当简单的条件下,我们证明了在存在连续时间和离散时间观察的情况下,估计量的一致性。此外,我们讨论了如何在实践强度函数上做出的结构假设,并解释了如何通过数据驱动的带宽选择,尽管估计器的二阶二阶矩未知(有时是未定义)。最终,我们将统计方法应用于对细胞中胞吐作用涉及的蛋白质的时空动力学分析,从而为这种复杂机制提供了新的见解。

Many spatio-temporal data record the time of birth and death of individuals, along with their spatial trajectories during their lifetime, whether through continuous-time observations or discrete-time observations. Natural applications include epidemiology, individual-based modelling in ecology, spatio-temporal dynamics observed in bio-imaging, and computer vision. The aim of this article is to estimate in this context the birth and death intensity functions, that depend in full generality on the current spatial configuration of all alive individuals. While the temporal evolution of the population size is a simple birth-death process, observing the lifetime and trajectories of all individuals calls for a new paradigm. To formalise this framework, we introduce spatial birth-death-move processes, where the birth and death dynamics depends on the current spatial configuration of the population and where individuals can move during their lifetime according to a continuous Markov process with possible interactions.We consider non-parametric kernel estimators of their birth and death intensity functions. The setting is original because each observation in time belongs to a non-vectorial, infinite dimensional space and the dependence between observations is barely tractable. We prove the consistency of the estimators in presence of continuous-time and discrete-time observations, under fairly simple conditions. We moreover discuss how we can take advantage in practice of structural assumptions made on the intensity functions and we explain how data-driven bandwidth selection can be conducted, despite the unknown (and sometimes undefined) second order moments of the estimators. We finally apply our statistical method to the analysis of the spatio-temporal dynamics of proteins involved in exocytosis in cells, providing new insights on this complex mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源