论文标题

Photonai-快速机器学习模型开发的Python API

PHOTONAI -- A Python API for Rapid Machine Learning Model Development

论文作者

Leenings, Ramona, Winter, Nils Ralf, Plagwitz, Lucas, Holstein, Vincent, Ernsting, Jan, Steenweg, Jakob, Gebker, Julian, Sarink, Kelvin, Emden, Daniel, Grotegerd, Dominik, Opel, Nils, Risse, Benjamin, Jiang, Xiaoyi, Dannlowski, Udo, Hahn, Tim

论文摘要

PhotOnai是一种高级Python API,旨在简化和加速机器学习模型开发。它充当统一的框架,使用户可以轻松访问并将不同工具箱中的算法组合到自定义算法序列中。它旨在支持迭代模型开发过程,并自动化重复培训,超参数优化和评估任务。重要的是,工作流程确保了公正的性能估计,同时仍允许用户完全自定义机器学习分析。 PhotOnai通过新颖的管道实现扩展了现有的解决方案,支持更复杂的数据流,功能组合和算法选择。可以使用Photonai Explorer方便地可视化指标和结果,并且预测模型可以以标准化格式共享,以进行进一步的外部验证或应用。不断增长的附加生态系统使研究人员可以为社区提供特定于数据的算法并增强生命科学领域的机器学习。它的实用性在示例性的医疗机器学习问题上得到了证明,并在几行代码中实现了最先进的解决方案。源代码在GitHub上公开可用,而示例和文档可以在www.photon-ai.com上找到。

PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development. It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences. It is especially designed to support the iterative model development process and automates the repetitive training, hyperparameter optimization and evaluation tasks. Importantly, the workflow ensures unbiased performance estimates while still allowing the user to fully customize the machine learning analysis. PHOTONAI extends existing solutions with a novel pipeline implementation supporting more complex data streams, feature combinations, and algorithm selection. Metrics and results can be conveniently visualized using the PHOTONAI Explorer and predictive models are shareable in a standardized format for further external validation or application. A growing add-on ecosystem allows researchers to offer data modality specific algorithms to the community and enhance machine learning in the areas of the life sciences. Its practical utility is demonstrated on an exemplary medical machine learning problem, achieving a state-of-the-art solution in few lines of code. Source code is publicly available on Github, while examples and documentation can be found at www.photon-ai.com.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源