论文标题

用于空间趋势非参数评估的计算验证

A computational validation for nonparametric assessment of spatial trends

论文作者

Meilán-Vila, Andrea, Fernández-Casal, Rubén, Francisco-Fernández, Rosa M. Crujeiras Mario

论文摘要

对连续空间变化的过程的分析通常考虑两种变异来源,即,该过程趋势收集的大规模变化以及小规模的变化。纬度和经度上的参数趋势模型易于适合和解释。但是,如果模型不合适,则使用简单的参数模型来表征空间变化的过程可能会导致指定问题。最近,Meilán-Vila等。 (2019年)提出了基于L2距离的合适性测试,用于评估与随机设计的参数趋势模型,并比较参数和非参数趋势估计器。本工作旨在在固定设计的地统计框架下使用不同的自举算法进行校准,对这种方法的行为进行详细的计算分析。提供了测试的渐近结果,并考虑了通常在地统计学中出现的复杂性的广泛的模拟研究,以说明该提议的性能。

The analysis of continuously spatially varying processes usually considers two sources of variation, namely, the large-scale variation collected by the trend of the process, and the small-scale variation. Parametric trend models on latitude and longitude are easy to fit and to interpret. However, the use of simple parametric models for characterizing spatially varying processes may lead to misspecification problems if the model is not appropriate. Recently, Meilán-Vila et al. (2019) proposed a goodness-of-fit test based on an L2-distance for assessing a parametric trend model with correlated errors, under random design, comparing a parametric and a nonparametric trend estimators. The present work aims to provide a detailed computational analysis of the behavior of this approach using different bootstrap algorithms for calibration, under a fixed-design geostatistical framework. Asymptotic results for the test are provided and an extensive simulation study, considering complexities that usually arise in geostatistics, is carried out to illustrate the performance of the proposal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源