论文标题

旋转轨道扭矩的半现实紧密结合模型

Semi-realistic tight-binding model for spin-orbit torques

论文作者

Manchon, G., Ghosh, S., Barreteau, C., Manchon, A.

论文摘要

我们使用Slater-Koster参数化在两个中心的紧密结合近似中使用Slater-Koster参数化计算过渡金属异质结构中的自旋轨道扭矩,仅对D轨道进行了核算。在这种方法中,自旋轨道耦合是在Russel-Saunders方案中建模的,这使我们能够在相等的基础上处理界面和散装旋转轨道传输。在Kubo线性响应理论中计算自旋轨道扭矩,耗散性(阻尼)和反应性(野外)的两个组件。通过系统地研究它们的厚度和角度的依赖性,我们能够准确地表征这些组件以外的传统“反旋转电力”和“自旋大厅”效应。尽管常规场状扭矩纯粹是界面的,但我们明确地证明了传统的阻尼样扭矩既具有界面和庞大的贡献。此外,野外和阻尼状的扭矩都表现出很大的角度依赖性,厚度截然不同。尽管磁场状扭矩的平面贡献随着非磁性金属厚度而平稳地减小,但与非磁性金属厚度随着阻尼状扭矩的平面贡献急剧增加。最后,当关闭非磁性金属的自旋轨道耦合时,我们研究了在铁磁铁上施加的自动扭矩。我们的结果表明,在Ferromagnet内部积累的自旋积累可能足够大,可以引起磁激发。

We compute the spin-orbit torque in a transition metal heterostructure using Slater-Koster parameterization in the two-center tight-binding approximation and accounting for d-orbitals only. In this method, the spin-orbit coupling is modeled within Russel-Saunders scheme, which enables us to treat interfacial and bulk spin-orbit transport on equal footing. The two components of the spin-orbit torque, dissipative (damping-like) and reactive (field-like), are computed within Kubo linear response theory. By systematically studying their thickness and angular dependence, we were able to accurately characterize these components beyond the traditional "inverse spin galvanic" and "spin Hall" effects. Whereas the conventional field-like torque is purely interfacial, we unambiguously demonstrate that the conventional the damping-like torque possesses both an interfacial and a bulk contribution. In addition, both field-like and damping-like torques display substantial angular dependence with strikingly different thickness behavior. While the planar contribution of the field-like torque decreases smoothly with the nonmagnetic metal thickness, the planar contribution of the damping-like torque increases dramatically with the nonmagnetic metal thickness. Finally, we investigate the self-torque exerted on the ferromagnet when the spin-orbit coupling of the nonmagnetic metal is turned off. Our results suggest that the spin accumulation that builds up inside the ferromagnet can be large enough to induce magnetic excitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源