论文标题
LHC的LEPTON风味违规和Dilepton尾巴
Lepton Flavor Violation and Dilepton Tails at the LHC
论文作者
论文摘要
从一般有效的Lagrangian开始在Quark-Lepton过渡中进行Lepton风味违规(LFV),我们从Dilepton流程的高质量尾部$ PP \ to \ ell_k \ ell_k \ ell_l $($ k \ neq l $ $)中得出了有效系数的约束。本文中从LHC数据中得出的当前(投影)极限,带有$ 36〜 \ MATHRM {fb}^{ - 1} $($ 3〜 \ Mathrm {Ab}^{ - 1} $)可用于通用的新物理学,包括具有标量,矢量,矢量,vector和tensor有效的算法的情况。对于纯粹的左手操作员,我们将这些LHC的约束与源自风味物理学可观察物的约束进行了比较,这说明了这些不同探针的互补性。虽然风味物理通常对违反夸克味的操作员的限制更为限制,但我们发现LHC对几个持有风味的味道提供了最严格的限制。此外,我们表明Dilepton Tails在当前的发光度下为魅力夸克过渡提供了最佳的探针,并且它们为Tauonic $ b \ d $ b \ d $ to $过渡提供了竞争限制。作为副产品,我们还为几个低能量LFV过程提供一般数值表达式,例如半leptonic衰减$ k \ toπ\ ell^{\ ell^{\ pm} _K \ ell^\ ell^{\ mp} {\ mp} _l $,$ b \ toπ\ ell^$ _p \ el^$ and $ and $ and $ and $ and} $ b \ to k^{(\ ast)} \ ell^{\ pm} _k \ ell^{\ mp} _l $。
Starting from a general effective Lagrangian for lepton flavor violation (LFV) in quark-lepton transitions, we derive constraints on the effective coefficients from the high-mass tails of the dilepton processes $pp \to \ell_k \ell_l$ (with $k\neq l$). The current (projected) limits derived in this paper from LHC data with $36~\mathrm{fb}^{-1}$ ($3~\mathrm{ab}^{-1}$) can be applied to generic new physics scenarios, including the ones with scalar, vector and tensor effective operators. For purely left-handed operators, we explicitly compare these LHC constraints with the ones derived from flavor-physics observables, illustrating the complementarity of these different probes. While flavor physics is typically more constraining for quark-flavor violating operators, we find that LHC provides the most stringent limits on several flavor-conserving ones. Furthermore, we show that dilepton tails offer the best probes for charm-quark transitions at current luminosities and that they provide competitive limits for tauonic $b\to d$ transitions at the high-luminosity LHC phase. As a by-product, we also provide general numerical expressions for several low-energy LFV processes, such as the semi-leptonic decays $K\to π\ell^{\pm}_k \ell^{\mp}_l$, $B\to π\ell^{\pm}_k \ell^{\mp}_l$ and $B\to K^{(\ast)} \ell^{\pm}_k \ell^{\mp}_l$.