论文标题

拓扑通信的生物

The bicategory of topological correspondences

论文作者

Holkar, Rohit Dilip

论文摘要

众所周知,从局部紧凑的群体中,带有HAAR系统\(((g,α)\)到另一个的拓扑对应\((x,λ)\)产生a \(\ textrm {c}^*\) - \ sookence \ sosection \(\ coolccal cal cal cal)(\ cal)cal \(h,(h,β)\)。 \(\ textrm {c}^*(g,α)\)to \(\ textrm {c}^*(h,β)\)。在我们之前的一篇文章中,我们描述了两个拓扑通讯。在本文中,我们证明,使用HAAR系统的第二个可计数局部紧凑的Hausdorff拓扑组形成了一个bicateGory \(\ mathfrak {t} \),当时配备了拓扑相应的对应关系为1箭头。保存度量家族的拓扑对应的同态同态是〜\(\ mathfrak {t} \)中的2箭头。另一方面,众所周知,\(\ textrm {c}^*\) - 代数形成一个bicateogry \(\ mathfrak {c} \),带有\(\ textrm {c}^*\) - socumentence。 \(\ mathfrak {c} \)中的2个arrows是希尔伯特\(\ textrm {c}^*\)的单位 - 模块,使表示表示。在本文中,我们表明,拓扑通信将用于\(\ textrm {c}^*\) - 一个是双functor〜\(\ mathfrak {t} \ to \ mathfrak {c} \)。

It is known that a topological correspondence \((X,λ)\) from a locally compact groupoid with a Haar system \((G,α)\) to another one, \((H,β)\), produces a \(\textrm{C}^*\)-correspondence \(\mathcal{H}(X,λ)\) from \(\textrm{C}^*(G,α)\) to \(\textrm{C}^*(H,β)\). In one of our earlier article we described composition two topological correspondences. In the present article, we prove that second countable locally compact Hausdorff topological groupoids with Haar systems form a bicategory \(\mathfrak{T}\) when equipped with a topological correspondences as 1-arrows. The equivariant homeomorphisms of topological correspondences preserving the families of measures are the 2-arrows in~\(\mathfrak{T}\). One the other hand, it well-known that \(\textrm{C}^*\)-algebras form a bicateogry \(\mathfrak{C}\) with \(\textrm{C}^*\)-correspondences as 1-arrows. The 2-arrows in \(\mathfrak{C}\) are unitaries of Hilbert \(\textrm{C}^*\)-modules that intertwine the representations. In this article, we show that a topological correspondence going to a \(\textrm{C}^*\)-one is a bifunctor~\(\mathfrak{T}\to\mathfrak{C}\).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源