论文标题

关于具有可变系数的二维通风仪问题的可溶性

On the solvability of a two-dimensional Ventcel problem with variable coefficients

论文作者

Greco, Antonio, Viglialoro, Giuseppe

论文摘要

本文处理以下混合边界价值问题\ begin {equination} \ label {QuasicaBstract} \ tag {$ \ diamond $} \ begin {cases}-ΔU= f&\ mbox {in $ = = up =φ&\ mbox {in $ =φ&\ mbox {on $γ_ { d} $,} \\u_ν-a_2 \,δ_{τ\,} u + a_0 \,u = g&\ mbox {on $γ_{\! ν} $,} \ end {cases} \ end {qore},其中$ω$是$ \ mathbb {r}^2 $的某些有限域,带有$ \ partialω=γ_=γ_{\!d} \! ν} $,$ν$表示普通单位向量为$γ_ {\! ν} $和$Δ_τ$沿〜$γ_ {\! ν} $。此外,$ f(\ bf x)$,$φ(\ bf x)$,$ a_2(\ bf x)$,$ a_0(\ bf x)$和$ g(\ bf x)$是$ω$,$γ_{\!d} $和$γ_ _ {\! ν} $,$ {\ bf x} =(x,y)$表示二维数组。在数据上的合适假设下,我们首先将弱解决方案$ u $的定义用于问题,然后证明它是唯一可解决的。此外,我们考虑了在现实世界应用程序中引起的\ eqref {QuessionAbstract}的特定情况:我们讨论结果模型并提供明确的解决方案。

This paper deals with the following mixed boundary value problem \begin{equation}\label{ProblemAbstract} \tag{$\Diamond$} \begin{cases} -Δu = f &\mbox{in $Ω$,} \\ u = φ&\mbox{on $Γ_{\! D}$,} \\ u_ν- a_2 \, Δ_{τ\,} u + a_0 \, u = g &\mbox{on $Γ_{\! ν}$,} \end{cases} \end{equation} where $Ω$ is some bounded domain of $\mathbb{R}^2$ with $\partial Ω=Γ_{\!D}\cup Γ_{\! ν}$, $ν$ indicating the normal unit vector to $Γ_{\! ν}$ and $Δ_τ$ the Laplace--Beltrami operator along~$Γ_{\! ν}$. Additionally, $f(\bf x)$, $φ(\bf x)$, $a_2(\bf x)$, $a_0(\bf x)$ and $g(\bf x)$ are convenient functions defined on $Ω$, $Γ_{\!D}$ and $Γ_{\! ν}$, and ${\bf x} = (x,y)$ denotes a two-dimensional array. Under suitable assumptions on the data, we first give the definition of a weak solution $u$ to the problem and then we prove that it is uniquely solvable. Further, we consider a particular case of \eqref{ProblemAbstract} arising in real-world applications: we discuss the resulting model and provide an explicit solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源