论文标题

量子蒙特卡洛的变异原则:差异最小化的陷入困境的故事

Variational principles in quantum Monte Carlo: the troubled story of variance minimization

论文作者

Cuzzocrea, Alice, Scemama, Anthony, Briels, Wim J., Moroni, Saverio, Filippi, Claudia

论文摘要

我们研究了在量子蒙特卡洛中使用不同变异原理的使用,即能量和方差最小化,这是由于对电子激发态的可靠和准确估计的兴趣所引起的。对于两个典型的,具有挑战性的分子,我们很容易地使用能量最小化以特定状态或州平均的方式来达到最佳可用参考激发能的准确性,分别针对不同或相等的对称性状态。另一方面,在方差最小化中,如果使用合适的功能来靶向特定状态,无论对称性如何,我们都会遇到各种波函数的严重问题:随着方差的收敛,能量从所选状态下降。即使目标是基态,有时也会观察到这种意外的行为,并且通常可以防止对总和激发能的稳健估计。我们使用非常简单的波函数分析了这个问题,并推断优化几乎没有或根本没有障碍,无法逃脱局部最小值或局部高原,最终会融合到唯一的最低差异状态而不是目标状态。尽管可以通过减少梯度的统计误差来延迟感兴趣状态的丢失,但对于逼真的波浪函数的完整优化,使用当前功能的方差最小化似乎是不切实际的途径。

We investigate the use of different variational principles in quantum Monte Carlo, namely energy and variance minimization, prompted by the interest in the robust and accurate estimate of electronic excited states. For two prototypical, challenging molecules, we readily reach the accuracy of the best available reference excitation energies using energy minimization in a state-specific or state-average fashion for states of different or equal symmetry, respectively. On the other hand, in variance minimization, where the use of suitable functionals is expected to target specific states regardless of the symmetry, we encounter severe problems for a variety of wave functions: as the variance converges, the energy drifts away from that of the selected state. This unexpected behavior is sometimes observed even when the target is the ground state, and generally prevents the robust estimate of total and excitation energies. We analyze this problem using a very simple wave function and infer that the optimization finds little or no barrier to escape from a local minimum or local plateau, eventually converging to the unique lowest-variance state instead of the target state. While the loss of the state of interest can be delayed and possibly avoided by reducing the statistical error of the gradient, for the full optimization of realistic wave functions, variance minimization with current functionals appears to be an impractical route.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源