论文标题

在不确定性下非线性系统的显式多目标模型预测控制

Explicit Multi-objective Model Predictive Control for Nonlinear Systems Under Uncertainty

论文作者

Castellanos, Carlos Ignacio Hernández, Ober-Blöbaum, Sina, Peitz, Sebastian

论文摘要

在实际问题中,如果未明确考虑,不确定性(例如,测量中的错误,精度错误)通常会导致数值算法的性能差。控制问题也是如此,最佳解决方案可以降解质量,甚至变得不可行。因此,需要设计可以处理不确定性的方法。在这项工作中,我们考虑了在初始条件下具有不确定性的非线性多目标最佳控制问题,尤其是通过模型预测控制(MPC)融入反馈回路。在多目标最佳控制中,必须找到多个冲突标准之间的最佳折衷。对于此类问题,在不确定性方面没有报道太多。为了解决此问题类别,我们设计了一个离线/在线框架,以计算有效的控制策略的近似值。这种方法与非线性系统的显式MPC密切相关,在线阶段解决了潜在昂贵的优化问题,以便在在线阶段实现快速解决方案。为了降低离线阶段的数值成本,我们在控制问题中利用对称性。此外,为了确保解决方案的最佳性,我们包括一个附加的在线优化步骤,该步骤比原始的多目标优化问题便宜得多。我们在安全和速度是目标的汽车机动问题上测试我们的框架。多目标框架允许在线改编所需的目标。另外,自动标记过程可产生非常有效的反馈控制。我们的结果表明,该方法能够设计驾驶策略,以在初始条件下更好地处理不确定性,这可以转化为潜在的更安全,更快的驾驶策略。

In real-world problems, uncertainties (e.g., errors in the measurement, precision errors) often lead to poor performance of numerical algorithms when not explicitly taken into account. This is also the case for control problems, where optimal solutions can degrade in quality or even become infeasible. Thus, there is the need to design methods that can handle uncertainty. In this work, we consider nonlinear multi-objective optimal control problems with uncertainty on the initial conditions, and in particular their incorporation into a feedback loop via model predictive control (MPC). In multi-objective optimal control, an optimal compromise between multiple conflicting criteria has to be found. For such problems, not much has been reported in terms of uncertainties. To address this problem class, we design an offline/online framework to compute an approximation of efficient control strategies. This approach is closely related to explicit MPC for nonlinear systems, where the potentially expensive optimization problem is solved in an offline phase in order to enable fast solutions in the online phase. In order to reduce the numerical cost of the offline phase, we exploit symmetries in the control problems. Furthermore, in order to ensure optimality of the solutions, we include an additional online optimization step, which is considerably cheaper than the original multi-objective optimization problem. We test our framework on a car maneuvering problem where safety and speed are the objectives. The multi-objective framework allows for online adaptations of the desired objective. Alternatively, an automatic scalarizing procedure yields very efficient feedback controls. Our results show that the method is capable of designing driving strategies that deal better with uncertainties in the initial conditions, which translates into potentially safer and faster driving strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源