论文标题
大型网络:用于卫星图像的多帧超分辨率的递归融合
HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery
论文作者
论文摘要
生成的深度学习引发了新的超分辨率(SR)算法,该算法增强了具有令人印象深刻的美学结果的单个图像,尽管有虚构的细节。多框架超分辨率(MFSR)通过以多种低分辨率视图进行调节,为不良问题提供了一种更扎实的方法。这对于卫星对地球的影响(从森林砍伐到侵犯人权的行为)的影响很重要,这些影响取决于可靠的图像。为此,我们介绍了大型网络,这是MFSR的第一种深度学习方法,以端到端的方式学习其子任务:(i)共同注册,(ii)融合,(iii)上采样,以及(iv)注册 - 在及以上。低分辨率视图的共同注册是通过参考框通道隐式学习的,没有明确的注册机制。我们学习了一个全局融合操作员,该操作员递归地应用于任意数量的低分辨率对。我们通过学习通过shiftnet将SR输出与地面真相保持一致,从而引入了注册损失。我们表明,通过学习多种视图的深层表示,我们可以超级溶解低分辨率信号并大规模增强地球观察数据。我们的方法最近在欧洲航天局的MFSR竞争中登上了现实世界中的卫星图像。
Generative deep learning has sparked a new wave of Super-Resolution (SR) algorithms that enhance single images with impressive aesthetic results, albeit with imaginary details. Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem, by conditioning on multiple low-resolution views. This is important for satellite monitoring of human impact on the planet -- from deforestation, to human rights violations -- that depend on reliable imagery. To this end, we present HighRes-net, the first deep learning approach to MFSR that learns its sub-tasks in an end-to-end fashion: (i) co-registration, (ii) fusion, (iii) up-sampling, and (iv) registration-at-the-loss. Co-registration of low-resolution views is learned implicitly through a reference-frame channel, with no explicit registration mechanism. We learn a global fusion operator that is applied recursively on an arbitrary number of low-resolution pairs. We introduce a registered loss, by learning to align the SR output to a ground-truth through ShiftNet. We show that by learning deep representations of multiple views, we can super-resolve low-resolution signals and enhance Earth Observation data at scale. Our approach recently topped the European Space Agency's MFSR competition on real-world satellite imagery.