论文标题

管道干预

Pipeline Interventions

论文作者

Arunachaleswaran, Eshwar Ram, Kannan, Sampath, Roth, Aaron, Ziani, Juba

论文摘要

我们介绍了\ emph {管道干预}问题,该问题由一个分层的定向无环形图和连续层之间的过渡的一组随机矩阵定义。该图是一种风格化的模型,用于如何向不同人口的人们提供机会,最终导致一些奖励。在我们的模型中,根据固定的概率分布,个体出生于初始位置(即图表的第一层中的某些节点),然后根据过渡矩阵在图中随机进展,直到它们到达图表的最后一层中的节点。最后一层中的每个节点都具有与之关联的\ emph {reward}。管道干预问题询问如何最好地对管理人们的随机转变的过渡矩阵进行昂贵的更改,但要受预算限制。我们考虑了两个目标:社会福利最大化,以及一个旨在以\ emph {lest}期望值最大化人口的价值(起点节点)的最大值的最大化目标。我们考虑了最大蛋白目标的两个变体,这些变体结果是不同的,具体取决于我们要求确定性解决方案还是允许随机化。对于每个目标,我们为恒定宽度网络提供有效的近似算法(添加剂FPTA)。我们还在我们的环境中紧密地描述了“公平价格”:最高可实现的社会福利与最高社会福利与最大值最佳解决方案一致的最高社会福利之间的比率。最后,我们表明,对于多项式宽度网络,即使对于具有恒定深度的网络,即使将最大值目标近似于任何常数因子也很难。这表明我们积极结果的宽度的限制至关重要。

We introduce the \emph{pipeline intervention} problem, defined by a layered directed acyclic graph and a set of stochastic matrices governing transitions between successive layers. The graph is a stylized model for how people from different populations are presented opportunities, eventually leading to some reward. In our model, individuals are born into an initial position (i.e. some node in the first layer of the graph) according to a fixed probability distribution, and then stochastically progress through the graph according to the transition matrices, until they reach a node in the final layer of the graph; each node in the final layer has a \emph{reward} associated with it. The pipeline intervention problem asks how to best make costly changes to the transition matrices governing people's stochastic transitions through the graph, subject to a budget constraint. We consider two objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to maximize the value to the population (starting node) with the \emph{least} expected value. We consider two variants of the maximin objective that turn out to be distinct, depending on whether we demand a deterministic solution or allow randomization. For each objective, we give an efficient approximation algorithm (an additive FPTAS) for constant width networks. We also tightly characterize the "price of fairness" in our setting: the ratio between the highest achievable social welfare and the highest social welfare consistent with a maximin optimal solution. Finally we show that for polynomial width networks, even approximating the maximin objective to any constant factor is NP hard, even for networks with constant depth. This shows that the restriction on the width in our positive results is essential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源