论文标题
Lipschitz版本的$λ$ - lemma和同型和异斜轨道的特征
A Lipschitz version of the $λ$-Lemma and a characterization of homoclinic and heteroclinic orbits
论文作者
论文摘要
在本文中,我们考虑了Lipschitz函数生成的有限尺寸动态系统。我们证明了惠特尼(Whitney)的扩展定理在紧凑型歧管上的版本,以获取著名的lambda引理版本的Lipschitz函数。 Lipschitz横向和双曲线的概念在有限维度的背景下进行了研究,标准弱于$ c^1 $ norm,并且比$ c^0 $ -norm强。
In this paper we consider finite dimensional dynamical systems generated by a Lipschitz function. We prove a version of the Whitney's Extension Theorem on compact manifolds to obtain a version of the well-known Lambda Lemma for Lipschitz functions. The notions of Lipschitz transversality and hyperbolicity are investigated in the context of finite dimension with a norm weaker than $C^1$-norm and stronger than $C^0$-norm.