论文标题

通用域转移学习对医学语言任务的实用性

The Utility of General Domain Transfer Learning for Medical Language Tasks

论文作者

Ranti, Daniel, Hanss, Katie, Zhao, Shan, Arvind, Varun, Titano, Joseph, Costa, Anthony, Oermann, Eric

论文摘要

这项研究的目的是分析用于医学自然语言处理(NLP)任务的转移学习技术和基于变压器的模型的功效,特别是放射学文本分类。我们使用了1,977个标记为96,303个总报告的标记的头部CT报告,以评估使用通用域Corpora和联合通用和医疗领域语料库进行预训练的功效,并具有来自变形金刚(BERT)模型的双向表示,以实现放射学文本分类的目的。使用单词矢量化和长期的短期记忆(LSTM)多标签多类分类模型将模型性能基准为逻辑回归,并与医学文本分类中的已发表文献进行了比较。使用任一组验证检查点的BERT模型的表现优于逻辑回归模型,对于通用域模型以及合并的一般和生物医学域模型,实现样本加权的平均F1分数为0.87和0.87。一般文本转移学习可能是一种可行的技术,可以在放射科语料库中的医疗NLP任务中产生最新的结果,从而超过其他深层模型,例如LSTMS。预处理和基于变压器的模型的功效可以促进在医学文本的独特挑战性数据环境中创建开创性的NLP模型。

The purpose of this study is to analyze the efficacy of transfer learning techniques and transformer-based models as applied to medical natural language processing (NLP) tasks, specifically radiological text classification. We used 1,977 labeled head CT reports, from a corpus of 96,303 total reports, to evaluate the efficacy of pretraining using general domain corpora and a combined general and medical domain corpus with a bidirectional representations from transformers (BERT) model for the purpose of radiological text classification. Model performance was benchmarked to a logistic regression using bag-of-words vectorization and a long short-term memory (LSTM) multi-label multi-class classification model, and compared to the published literature in medical text classification. The BERT models using either set of pretrained checkpoints outperformed the logistic regression model, achieving sample-weighted average F1-scores of 0.87 and 0.87 for the general domain model and the combined general and biomedical-domain model. General text transfer learning may be a viable technique to generate state-of-the-art results within medical NLP tasks on radiological corpora, outperforming other deep models such as LSTMs. The efficacy of pretraining and transformer-based models could serve to facilitate the creation of groundbreaking NLP models in the uniquely challenging data environment of medical text.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源