论文标题

不能近似归一化算法信息距离

The normalized algorithmic information distance can not be approximated

论文作者

Bauwens, Bruno, Blinnikov, Ilya

论文摘要

众所周知,归一化算法信息距离$ n $是不可计算的,也不可半计算。我们表明,对于所有$ε<1/2 $,没有与$ n $不同的半计算函数最多〜$ε$。此外,对于任何可计算功能$ f $ \leε$,对于所有$ n $,存在$ x,y $ a length $ n $的y $,以便$ \ sum_t | f(x,y,t+1)-f(x,x,y,y,t)| \geΩ(\ log n)$。这是最佳选择的最佳因素。我们还表明,$ n $的限制近似值的最大振荡数为$ω(n/\ log n)$。这加强了$ω(1)$从[K。 Ambos-Spies,W。Merkle和S.A. Terwijn,2019年,归一化信息距离和振荡层次结构],请参见Arxiv:1708.03583。

It is known that the normalized algorithmic information distance $N$ is not computable and not semicomputable. We show that for all $ε< 1/2$, there exist no semicomputable functions that differ from $N$ by at most~$ε$. Moreover, for any computable function $f$ such that $|\lim_t f(x,y,t) - N(x,y)| \le ε$ and for all $n$, there exist strings $x,y$ of length $n$ such that $\sum_t |f(x,y,t+1) - f(x,y,t)| \ge Ω(\log n)$. This is optimal up to constant factors. We also show that the maximal number of oscillations of a limit approximation of $N$ is $Ω(n/\log n)$. This strengthens the $ω(1)$ lower bound from [K. Ambos-Spies, W. Merkle, and S.A. Terwijn, 2019, Normalized information distance and the oscillation hierarchy], see arXiv:1708.03583 .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源