论文标题
弹性结构中的静态粘附滞后
Static adhesion hysteresis in elastic structures
论文作者
论文摘要
弹性结构(例如石墨烯片,碳纳米管和微管)之间的粘合性相互作用已被证明显示出由于与键断裂相关的不可恢复的能量损失,即使是在静态(速率无关)实验中。为了理解这种现象,我们从最小的理论开始,从底物中剥离薄板,将粘结破裂的局部事件与板的非局部弹性放松耦合,并表明这可以驱动静态粘附滞留在粘结/脱键周期上。使用此模型,我们根据系统的粘附和弹性参数来量化滞后。这使我们能够得出缩放关系,该关系可以在不同水平的粒度水平上保留滞后,同时在离散断裂过程的连续限制下解决了晶格捕获的悖论。最后,为了验证我们的理论,我们使用新的实验来证明和测量捆绑的微管中的粘附滞后。
Adhesive interactions between elastic structures such as graphene sheets, carbon nanotubes, and microtubules have been shown to exhibit hysteresis due to irrecoverable energy loss associated with bond breakage, even in static (rate-independent) experiments. To understand this phenomenon, we start with a minimal theory for the peeling of a thin sheet from a substrate, coupling the local event of bond breaking to the nonlocal elastic relaxation of the sheet and show that this can drive static adhesion hysteresis over a bonding/debonding cycle. Using this model we quantify hysteresis in terms of the adhesion and elasticity parameters of the system. This allows us to derive a scaling relation that preserves hysteresis at different levels of granularity while resolving a seeming paradox of lattice trapping in the continuum limit of a discrete fracture process. Finally, to verify our theory, we use new experiments to demonstrate and measure adhesion hysteresis in bundled microtubules.