论文标题

关于DNF结构上加权模型集成的近似性

On the Approximability of Weighted Model Integration on DNF Structures

论文作者

Abboud, Ralph, Ceylan, İsmail İlkan, Dimitrov, Radoslav

论文摘要

加权模型计数(WMC)包括计算命题公式所有满足分配的加权总和。 WMC众所周知是精确求解的#p-hard,但是当仅限于DNF结构时,就可以接受完全多项式的随机近似方案(FPRA)。在这项工作中,我们研究了加权模型集成,加权模型计数的概括,除了命题变量外,还涉及实际变量,并提出以下问题:在DNF结构上加权模型集成是否可以接受FPRAS?在基于近似体积计算和近似加权模型计数的经典结果的基础上,我们表明,对于一类权重功能,确实可以近似于DNF结构上的加权模型集成。我们的近似算法基于三个子例程,每个子例程都可以是弱(即近似),也可以是坚固(即精确的)甲骨文,在所有情况下,都具有准确的保证。我们在随机生成的不同大小的DNF实例上实验验证了我们的方法,并表明我们的算法量表到大型问题实例,最多涉及1K变量,这些变量目前无法触及现有的通用加权模型集成求解器。

Weighted model counting (WMC) consists of computing the weighted sum of all satisfying assignments of a propositional formula. WMC is well-known to be #P-hard for exact solving, but admits a fully polynomial randomized approximation scheme (FPRAS) when restricted to DNF structures. In this work, we study weighted model integration, a generalization of weighted model counting which involves real variables in addition to propositional variables, and pose the following question: Does weighted model integration on DNF structures admit an FPRAS? Building on classical results from approximate volume computation and approximate weighted model counting, we show that weighted model integration on DNF structures can indeed be approximated for a class of weight functions. Our approximation algorithm is based on three subroutines, each of which can be a weak (i.e., approximate), or a strong (i.e., exact) oracle, and in all cases, comes along with accuracy guarantees. We experimentally verify our approach over randomly generated DNF instances of varying sizes, and show that our algorithm scales to large problem instances, involving up to 1K variables, which are currently out of reach for existing, general-purpose weighted model integration solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源