论文标题
如何在业余时间0WN NAS
How to 0wn NAS in Your Spare Time
论文作者
论文摘要
新的数据处理管道和新型网络体系结构越来越多地推动了深度学习的成功。因此,该行业将表现最佳的体系结构视为知识产权,并致力于通过神经体系结构搜索(NAS)来发现此类体系结构。这为对手窃取了这些新颖的架构提供了动力。当在云中使用时,为了提供机器学习作为服务,对手也有机会通过利用一系列硬件侧渠道来重建体系结构。但是,在不知道计算图(例如,层,分支或跳过连接),体系结构参数(例如,卷积层中的过滤器数量)或特定的预处理步骤(例如嵌入)的情况下(例如,嵌入),重建新型体系结构和管道是具有挑战性的。在本文中,我们设计了一种算法,该算法通过利用少量信息泄漏从高速缓存侧渠道攻击,Flush+ReloDAD来重建新型深度学习系统的关键组成部分。我们使用冲洗+重新加载来推断每个计算的计算痕迹和时间安排。然后,我们的算法从痕迹中生成候选计算图,并通过参数估计过程消除不兼容的候选者。我们在Pytorch和TensorFlow中实现算法。我们通过实验证明,我们可以重建Malconv,这是一种新型的数据预处理管道,用于恶意软件检测,而ProxylessNas-CPU是一种针对Imagenet分类的新型网络架构,用于在CPU上进行优化,而不了解建筑系列。在这两种情况下,我们都会达到0%的误差。这些结果表明,硬件侧渠道是针对MLAA的实用攻击向量,应付出更多的努力来理解其对深度学习系统安全性的影响。
New data processing pipelines and novel network architectures increasingly drive the success of deep learning. In consequence, the industry considers top-performing architectures as intellectual property and devotes considerable computational resources to discovering such architectures through neural architecture search (NAS). This provides an incentive for adversaries to steal these novel architectures; when used in the cloud, to provide Machine Learning as a Service, the adversaries also have an opportunity to reconstruct the architectures by exploiting a range of hardware side channels. However, it is challenging to reconstruct novel architectures and pipelines without knowing the computational graph (e.g., the layers, branches or skip connections), the architectural parameters (e.g., the number of filters in a convolutional layer) or the specific pre-processing steps (e.g. embeddings). In this paper, we design an algorithm that reconstructs the key components of a novel deep learning system by exploiting a small amount of information leakage from a cache side-channel attack, Flush+Reload. We use Flush+Reload to infer the trace of computations and the timing for each computation. Our algorithm then generates candidate computational graphs from the trace and eliminates incompatible candidates through a parameter estimation process. We implement our algorithm in PyTorch and Tensorflow. We demonstrate experimentally that we can reconstruct MalConv, a novel data pre-processing pipeline for malware detection, and ProxylessNAS- CPU, a novel network architecture for the ImageNet classification optimized to run on CPUs, without knowing the architecture family. In both cases, we achieve 0% error. These results suggest hardware side channels are a practical attack vector against MLaaS, and more efforts should be devoted to understanding their impact on the security of deep learning systems.