论文标题
分辨率几乎戈伦斯坦代数的特性
Properties of the resolution of almost Gorenstein algebras
论文作者
论文摘要
我们研究了几乎Gorenstein Artinian代数$ r/i的分辨率的属性,即由Ideals $ i $定义的代数,以至于$ i = j+(f),$ j $ j $ gorenstein Ideal和$ f \。然后,我们对分辨率和分级的betti数字进行新的明确描述,几乎是Codimension $ 3 $的几乎完整交叉点的理想,我们表征了可以使用Artinian单一理想来实现的理想。
We study properties of the resolution of almost Gorenstein artinian algebras $R/I,$ i.e. algebras defined by ideals $I$ such that $I=J+(f),$ with $J$ Gorenstein ideal and $f\in R.$ Such algebras generalize the well known almost complete intersection artinian algebras. Then we give a new explicit description of the resolution and of the graded Betti numbers of almost complete intersection ideals of codimension $3$ and we characterize the ideals whose graded Betti numbers can be achieved using artinian monomial ideals.