论文标题
抽象视觉推理的分层规则感知网络
Stratified Rule-Aware Network for Abstract Visual Reasoning
论文作者
论文摘要
抽象推理是指分析信息,以无形层面发现规则并以创新方式解决问题的能力。 Raven的渐进式矩阵(RPM)测试通常用于检查抽象推理的能力。要求受试者从答案集中确定正确的选择,以填充RPM右下角的缺失面板(例如3 $ \ times $ 3矩阵),按照矩阵内的基本规则。最近的研究利用了卷积神经网络(CNN),已经取得了令人鼓舞的进步来完成RPM测试。但是,它们部分忽略了RPM求解器的必要电感偏差,例如每个行/列内的订单灵敏度和增量规则诱导。为了解决这个问题,在本文中,我们提出了一个分层的规则感知网络(SRAN),以生成两个输入序列的规则嵌入。我们的SRAN学习了不同级别的多个粒度规则嵌入,并通过封闭的融合模块逐步整合了分层的嵌入流。借助嵌入式,应用了规则相似性度量,以确保SRAN不仅可以使用Tuplet损失对SRAN进行训练,还可以有效地推断出最佳答案。我们进一步指出,用于RPM测试的流行Raven数据集中存在的严重缺陷,这阻止了对抽象推理能力的公平评估。为了修复缺陷,我们提出了一种称为属性分配树(ABT)的答案集合生成算法,形成了一个改进的数据集(简称I-Raven)。在PGM和I-Raven数据集上进行了广泛的实验,这表明我们的Sran的表现优于最先进的模型。
Abstract reasoning refers to the ability to analyze information, discover rules at an intangible level, and solve problems in innovative ways. Raven's Progressive Matrices (RPM) test is typically used to examine the capability of abstract reasoning. The subject is asked to identify the correct choice from the answer set to fill the missing panel at the bottom right of RPM (e.g., a 3$\times$3 matrix), following the underlying rules inside the matrix. Recent studies, taking advantage of Convolutional Neural Networks (CNNs), have achieved encouraging progress to accomplish the RPM test. However, they partly ignore necessary inductive biases of RPM solver, such as order sensitivity within each row/column and incremental rule induction. To address this problem, in this paper we propose a Stratified Rule-Aware Network (SRAN) to generate the rule embeddings for two input sequences. Our SRAN learns multiple granularity rule embeddings at different levels, and incrementally integrates the stratified embedding flows through a gated fusion module. With the help of embeddings, a rule similarity metric is applied to guarantee that SRAN can not only be trained using a tuplet loss but also infer the best answer efficiently. We further point out the severe defects existing in the popular RAVEN dataset for RPM test, which prevent from the fair evaluation of the abstract reasoning ability. To fix the defects, we propose an answer set generation algorithm called Attribute Bisection Tree (ABT), forming an improved dataset named Impartial-RAVEN (I-RAVEN for short). Extensive experiments are conducted on both PGM and I-RAVEN datasets, showing that our SRAN outperforms the state-of-the-art models by a considerable margin.