论文标题

表面流的拓扑优化

Topology optimization of surface flows

论文作者

Deng, Yongbo, Zhang, Weihong, Zhu, Jihong, Bai, Junqiang, Liu, Zhenyu, Korvink, Jan G.

论文摘要

本文为表面流提供了一种拓扑优化方法,该方法可以代表固体/液体和液体和液体/蒸气界面的粘性和不可压缩的流体运动。这些材料界面上的流体运动可以用在2个序列或二维歧管上定义的表面纳维尔 - 长方式方程来描述,其中基本切向微积分是根据笛卡尔系统中表达的外部差分算子实现的。基于填充设计域的多孔介质流体流的拓扑优化模型,将人造的darcy摩擦添加到表面纳维尔 - 长方体方程的区域力项中,并且物理面积力受到惩罚,以消除其在流体区域中的存在,并避免多孔培养基模型的无效性。通过迭代地将多孔培养基在2个manifolds上的不渗透性演变而来,可以实现用于稳定和不稳定的表面流的拓扑优化,其中不渗透性由源自设计变量的材料密度插值。使用表面有限元法解决了相关的偏微分方程。已经提供了数值示例,以证明表面流的这种拓扑优化方法,包括边界速度驱动的流动,区域力驱动的流量和对流扩散流。

This paper presents a topology optimization approach for surface flows, which can represent the viscous and incompressible fluidic motions at the solid/liquid and liquid/vapor interfaces. The fluidic motions on such material interfaces can be described by the surface Navier-Stokes equations defined on 2-manifolds or two-dimensional manifolds, where the elementary tangential calculus is implemented in terms of exterior differential operators expressed in a Cartesian system. Based on the topology optimization model for fluidic flows with porous medium filling the design domain, an artificial Darcy friction is added to the area force term of the surface Navier-Stokes equations and the physical area forces are penalized to eliminate their existence in the fluidic regions and to avoid the invalidity of the porous medium model. Topology optimization for steady and unsteady surface flows can be implemented by iteratively evolving the impermeability of the porous medium on the 2-manifolds, where the impermeability is interpolated by the material density derived from a design variable. The related partial differential equations are solved by using the surface finite element method. Numerical examples have been provided to demonstrate this topology optimization approach for surface flows, including the boundary velocity driven flows, area force driven flows and convection-diffusion flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源