论文标题

一维Landau-lifshitz-gilbert方程的自相似收缩器

Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation

论文作者

Gutiérrez, Susana, de Laire, André

论文摘要

本文的主要目的是对一维Landau-Lifshitz-Gilbert方程(LLG)的自我脱离溶液的分析研究,该模型描述了铁磁材料中旋转的动力学。我们表明,有一个独特的平稳的向后自相似解决方案,最直至对称性,我们建立了它们的渐近性。此外,我们获得了在阻尼的存在下,自相似轮廓的轨迹会以指数速率收敛到球体上的大圆圈$ \ mathbb {s}^2 $。特别是,本文中介绍的结果提供了有限时间的爆炸示例,其中奇异性由于迅速形成极限圆而形成。

The main purpose of this paper is the analytical study of self-shrinker solutions of the one-dimensional Landau-Lifshitz-Gilbert equation (LLG), a model describing the dynamics for the spin in ferromagnetic materials. We show that there is a unique smooth family of backward self-similar solutions to the LLG equation, up to symmetries, and we establish their asymptotics. Moreover, we obtain that in the presence of damping, the trajectories of the self-similar profiles converge to great circles on the sphere $\mathbb{S}^2$, at an exponential rate. In particular, the results presented in this paper provide examples of blow-up in finite time, where the singularity develops due to rapid oscillations forming limit circles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源