论文标题

复杂矢量捆绑包的拓扑分类超过$ 8 $ - 二维旋转$^{c} $歧管

Topological classification of complex vector bundles over $8$-dimensional spin$^{c}$ manifolds

论文作者

Yang, Huijun

论文摘要

在本文中,复杂的矢量捆绑包$ r $超过$ 8 $二维旋转$^{c} $歧管是根据复杂矢量捆绑包的Chern类和歧管的共同体圈的分类,其中$ r = 3 $或$ 4 $。作为一个应用程序,我们得到了两个排名$ 3 $复杂的矢量捆绑包,超过$ 4 $二维的复杂射击射击空间$ \ c p^{4} $是同构的,并且仅当它们具有相同的Chern类时。此外,确定了$ 3 $ 3 $复杂的向量捆绑包的Chern类超过$ \ c p^{4} $。将托马斯(Thomas)和斯威策(Switzer)的结果梳理到我们的工作中,我们可以断言,复杂的向量捆绑包在$ \ c p^{4} $上都被分类。

In this paper, complex vector bundles of rank $r$ over $8$-dimensional spin$^{c}$ manifolds are classified in terms of the Chern classes of the complex vector bundles and the cohomology ring of the manifolds, where $r = 3$ or $4$. As an application, we got that two rank $3$ complex vector bundles over $4$-dimensional complex projective spaces $\C P^{4}$ are isomorphic if and only if they have the same Chern classes. Moreover, the Chern classes of rank $3$ complex vector bundles over $\C P^{4}$ are determined. Combing Thomas's and Switzer's results with our work, we can assert that complex vector bundles over $\C P^{4}$ are all classified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源