论文标题

深度学习模型特定于患者的自适应放射疗法的鉴定

Patient-Specific Finetuning of Deep Learning Models for Adaptive Radiotherapy in Prostate CT

论文作者

Elmahdy, Mohamed S., Ahuja, Tanuj, van der Heide, U. A., Staring, Marius

论文摘要

目标体积和器官 - 危险(OARS)的轮廓是放射疗法治疗计划的关键一步。在自适应放射疗法环境中,需要根据日常成像生成更新的轮廓。在这项工作中,我们利用在治疗课程中积累的个性化解剖学知识,以提高特定患者的预训练卷积神经网络(CNN)的分割精度。我们根据早期治疗部分获得的成像,研究了一种转移学习方法,将基线CNN模型微调为特定患者。基线CNN模型在一家由379名患者的医院的前列腺CT数据集上进行了训练。然后,在另一位由18例患者的医院的独立数据集上进行了微调和测试,每个患者每天有7至10个CT扫描。对于前列腺,囊泡,膀胱和直肠,对每个特定患者进行微调的模型的平均表面距离(MSD)为$ 1.64 \ pm 0.43 $毫米,$ 2.38 \ pm 2.76 $ 2.76 $ mm,$ 2.30 \ $ 2.30 \ pm 0.96 $ 0.96 $ mm,$ 1.24 \ pm 0.89 $ 0.89 $ mm,这是相应的,这是相应的,这是相应的。因此,在前列腺癌的适应性放射疗法的背景下,提出的个性化模型适应对临床实施非常有前途。

Contouring of the target volume and Organs-At-Risk (OARs) is a crucial step in radiotherapy treatment planning. In an adaptive radiotherapy setting, updated contours need to be generated based on daily imaging. In this work, we leverage personalized anatomical knowledge accumulated over the treatment sessions, to improve the segmentation accuracy of a pre-trained Convolution Neural Network (CNN), for a specific patient. We investigate a transfer learning approach, fine-tuning the baseline CNN model to a specific patient, based on imaging acquired in earlier treatment fractions. The baseline CNN model is trained on a prostate CT dataset from one hospital of 379 patients. This model is then fine-tuned and tested on an independent dataset of another hospital of 18 patients, each having 7 to 10 daily CT scans. For the prostate, seminal vesicles, bladder and rectum, the model fine-tuned on each specific patient achieved a Mean Surface Distance (MSD) of $1.64 \pm 0.43$ mm, $2.38 \pm 2.76$ mm, $2.30 \pm 0.96$ mm, and $1.24 \pm 0.89$ mm, respectively, which was significantly better than the baseline model. The proposed personalized model adaptation is therefore very promising for clinical implementation in the context of adaptive radiotherapy of prostate cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源