论文标题
在近似密度功能中学习能量曲率与粒子数
Learning the energy curvature versus particle number in approximate density functionals
论文作者
论文摘要
平均能量曲率随粒子数的函数是分子特异性的数量,它测量了给定功能脱离密度功能理论(DFT)的确切条件的偏差。与近似交换相关电位中缺乏衍生性不连续性有关,有关曲率的信息已成功用于恢复Kohn-Sham轨道特征值的物理含义,并开发非经验调整和密度功能近似值的非经验调整和校正方案。在这项工作中,我们提出了一个机器学习框架的构建,该框架针对数千个小有机分子(QM7数据库)的中性阳离子和激进阳离子状态之间的平均能量曲率。该模型的适用性在LC-$ω$ PBE功能的系统特异性伽马调节的背景下进行了证明,并针对分子第一电离电位(EOM)耦合群集参考验证。此外,我们提出了非线性回归模型的本地版本,并通过确定与孔传输材料领域相关的两个大分子的最佳范围分离参数来证明其可传递性和预测能力。最后,我们使用T-SNE尺寸还原算法探索QM7数据库的基础结构,并确定促进与分段线性条件偏差的结构和组成模式。
The average energy curvature as a function of the particle number is a molecule-specific quantity, which measures the deviation of a given functional from the exact conditions of density functional theory (DFT). Related to the lack of derivative discontinuity in approximate exchange-correlation potentials, the information about the curvature has been successfully used to restore the physical meaning of Kohn-Sham orbital eigenvalues and to develop non-empirical tuning and correction schemes for density functional approximations. In this work, we propose the construction of a machine-learning framework targeting the average energy curvature between the neutral and the radical cation state of thousands of small organic molecules (QM7 database). The applicability of the model is demonstrated in the context of system-specific gamma-tuning of the LC-$ω$PBE functional and validated against the molecular first ionization potentials at equation-of-motion (EOM) coupled-cluster references. In addition, we propose a local version of the non-linear regression model and demonstrate its transferability and predictive power by determining the optimal range-separation parameter for two large molecules relevant to the field of hole-transporting materials. Finally, we explore the underlying structure of the QM7 database with the t-SNE dimensionality-reduction algorithm and identify structural and compositional patterns that promote the deviation from the piecewise linearity condition.