论文标题
等摩尔难治性高渗透合金中的延性和脆性裂纹尖端反应
Ductile and brittle crack-tip response in equimolar refractory high-entropy alloys
论文作者
论文摘要
需要理解作为新的高温材料提出的难治性高渗透合金(HEAS)中的增强和变形机制,这是改善其通常不足的室温延展性所必需的。在此,进行了密度功能理论模拟和连续力学分析,以系统地研究裂解裂解与体内以体内的立方体难治性HFNBTIZR,MONBTAVW,MONBTAVW,MONBTAW,MONBTAW,MONBTAW,MONBTIV,MONBTIV,MONBTIV和NBTIVZR的裂纹发射之间的竞争。评估了这种裂纹尖端竞争,以进行拉伸负荷和15个裂纹配置和滑动系统的总体。我们的结果预测,裂纹尖端处的脱位可塑性通常不利 - 尽管竞争对于某些裂纹方向而言是接近的,这表明在零温度下,这五个HEAS中的固有性脆性和低裂纹尖端骨折韧性。针对HFNBTIZR研究的局部合金组合物的波动可以在局部降低滑动系统相对于该滑动系统的构型平均值的脱位发射的阻力,但不要改变主要的裂纹尖端响应。在单晶蒙哥特(Monbtaw)的情况下,可以在\ {100 \}平面上进行实验,室温骨折 - 折断值,理论和实验结果非常有利。讨论了可能限制协议的因素。我们调查材料各向异性对首选裂纹尖端方向的影响,这些方向被认为是合金特异性的。发现混合模式载荷可以转移竞争,以裂解或脱位成核,这取决于裂纹构型,并通过材料各向异性对裂纹尖端应力的影响进行扩增。
Understanding the strengthening and deformation mechanisms in refractory high-entropy alloys (HEAs), proposed as new high-temperature material, is required for improving their typically insufficient room-temperature ductility. Here, density-functional theory simulations and a continuum mechanics analysis were conducted to systematically investigate the competition between cleavage decohesion and dislocation emission from a crack tip in the body-centered cubic refractory HEAs HfNbTiZr, MoNbTaVW, MoNbTaW, MoNbTiV, and NbTiVZr. This crack-tip competition is evaluated for tensile loading and a totality of 15 crack configurations and slip systems. Our results predict that dislocation plasticity at the crack tip is generally unfavorable -- although the competition is close for some crack orientations, suggesting intrinsic brittleness and low crack-tip fracture toughness in these five HEAs at zero temperature. Fluctuations in local alloy composition, investigated for HfNbTiZr, can locally reduce the resistance to dislocation emission for a slip system relative to the configuration average of that slip system, but do not change the dominant crack-tip response. In the case of single-crystal MoNbTaW, where an experimental, room-temperature fracture-toughness value is available for a crack on a \{100\} plane, theoretical and experimental results agree favorably. Factors that may limit the agreement are discussed. We survey the effect of material anisotropy on preferred crack tip orientations, which are found to be alloy specific. Mixed-mode loadings are found to shift the competition in favor of cleavage or dislocation nucleation, depending on crack configuration and amplified by the effect of material anisotropy on crack tip stresses.