论文标题
复杂的2步nilpotent Lie组上的阳性hermitian曲率流动
Positive Hermitian curvature flow on complex 2-step nilpotent Lie groups
论文作者
论文摘要
我们研究了复杂的2步nilpotent Lie基团的左转指标的正居性曲率流。在这种情况下,我们完全表征了流动的长时间行为,表明在Cheeger-Gromov拓扑结构中,将流向非载体代数孤子的流量符号化解决方案。我们还对此类谎言组的代数孤子表现出了独特的结果。
We study the positive Hermitian curvature flow of left-invariant metrics on complex 2-step nilpotent Lie groups. In this setting we completely characterize the long-time behaviour of the flow, showing that normalized solutions to the flow subconverge to a non-flat algebraic soliton, in Cheeger- Gromov topology. We also exhibit a uniqueness result for algebraic solitons on such Lie groups.