论文标题
集群中星系的可靠光度成员资格(RPM)。 I.机器学习方法及其在本地宇宙中的性能
Reliable Photometric Membership (RPM) of Galaxies in Clusters. I. A Machine Learning Method and its Performance in the Local Universe
论文作者
论文摘要
我们引入了一种新方法,以确定仅基于光度特性的星系群集成员资格。我们采用一种机器学习方法来从星系光度法参数中恢复群集成员概率,并最终得出成员分类。在测试了几种机器学习技术(例如随机梯度提升,平均神经网络和K-Nearest Neigner的模型)之后,我们发现了支持向量机(SVM)算法在应用于数据时的性能更好。我们的培训和验证数据来自斯隆数字天空调查(SDSS)的主要样本。因此,要完整到$ m_r^* + 3 $,我们将工作限制在30个群集中,$ z _ {\ text {phot-cl}}} \ le 0.045 $。群众($ m_ {200} $)大于$ \ sim 0.6 \ times10^{14} m _ {\ odot} $(大多数高于$ 3 \ 3 \ times10^{14} m _ {\ odot} $)。我们的结果是在每个群集视线中的所有星系中得出的,没有光度红移或背景校正。我们的方法是非参数,没有关于星系中星系的数量密度或光度谱的假设。我们的方法在r $ _ {200} $中提供了极为准确的结果(完整性,C $ \ sim 92 \%$和纯度,p $ \ sim 87 \%$),因此我们命名了代码{\ bf rpm}。我们讨论对大小,颜色和簇质量的可能依赖性。最后,我们介绍了我们方法的一些应用,强调了它对未来的大规模调查(例如Erosita,Euclid and LSST)的影响对星系进化和宇宙学研究的影响。
We introduce a new method to determine galaxy cluster membership based solely on photometric properties. We adopt a machine learning approach to recover a cluster membership probability from galaxy photometric parameters and finally derive a membership classification. After testing several machine learning techniques (such as Stochastic Gradient Boosting, Model Averaged Neural Network and k-Nearest Neighbors), we found the Support Vector Machine (SVM) algorithm to perform better when applied to our data. Our training and validation data are from the Sloan Digital Sky Survey (SDSS) main sample. Hence, to be complete to $M_r^* + 3$ we limit our work to 30 clusters with $z_{\text{phot-cl}} \le 0.045$. Masses ($M_{200}$) are larger than $\sim 0.6\times10^{14} M_{\odot}$ (most above $3\times10^{14} M_{\odot}$). Our results are derived taking in account all galaxies in the line of sight of each cluster, with no photometric redshift cuts or background corrections. Our method is non-parametric, making no assumptions on the number density or luminosity profiles of galaxies in clusters. Our approach delivers extremely accurate results (completeness, C $\sim 92\%$ and purity, P $\sim 87\%$) within R$_{200}$, so that we named our code {\bf RPM}. We discuss possible dependencies on magnitude, colour and cluster mass. Finally, we present some applications of our method, stressing its impact to galaxy evolution and cosmological studies based on future large scale surveys, such as eROSITA, EUCLID and LSST.