论文标题

通过人类机器人感觉扩大改进跟踪

Improving Tracking through Human-Robot Sensory Augmentation

论文作者

Li, Yanan, Eden, Jonathan, Carboni, Gerolamo, Burdet, Etienne

论文摘要

本文介绍了人类机器人感官增强,并在跟踪任务上进行了说明,在此过程中,可以通过机器人与其人类用户之间的感官信息来提高性能。最近发现,在人类之间的互动过程中,合作伙伴使用彼此的感官信息来改善自己的感觉,从而提高了他们的表现和学习。在本文中,我们开发了这种独特的人类能力的计算模型,并使用它来为人类机器人互动构建新颖的控制框架。人类伴侣的控制被公式为反馈控制,并具有未知的控制收益和所需的轨迹。首先使用Kalman滤波器估算控制增益,然后估算所需的轨迹。估计的人类伴侣的所需轨迹用作有关该系统的增强感官信息,并与机器人的测量相结合,以估算不确定的目标轨迹。在机器人接口上的仿真和实现框架验证了所提出的观察者predictor对以进行跟踪任务。使用该机器人获得的结果证明了如何识别人类用户的控制,并表现出这种感觉增强的类似好处,如相互作用的人之间所观察到的。

This paper introduces human-robot sensory augmentation and illustrates it on a tracking task, where performance can be improved by the exchange of sensory information between the robot and its human user. It was recently found that during interaction between humans, the partners use each other's sensory information to improve their own sensing, thus also their performance and learning. In this paper, we develop a computational model of this unique human ability, and use it to build a novel control framework for human-robot interaction. The human partner's control is formulated as a feedback control with unknown control gains and desired trajectory. A Kalman filter is used to estimate first the control gains and then the desired trajectory. The estimated human partner's desired trajectory is used as augmented sensory information about the system and combined with the robot's measurement to estimate an uncertain target trajectory. Simulations and an implementation of the presented framework on a robotic interface validate the proposed observer-predictor pair for a tracking task. The results obtained using this robot demonstrate how the human user's control can be identified, and exhibit similar benefits of this sensory augmentation as was observed between interacting humans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源